User’'s Guide to the Code Generation Tool
CGT

Hagen Radtke

September 1, 2014

Contents

3_Modifying the ecosystem model 9
i i 1 9
3.2 Syntax of the Text Filed 9

|3 3 Writing formulas with compatibility to different programmine laneuaged . 18

[3.3.1 How to write expressions that work evervwherd 18

7 Using special features in CGT 29
Mmﬂmb&lamng&imsmmﬂm& 29

Contents

1 Introduction

paint

Code
templates

transform
co

determine

I

i Code Generation Tool

Figure 1.1: Conceptual view of what the code generation tool does.

Finished code

Unchanged code
(physics)

1.1 What is the Code Generation Tool

The ecosystem Code Generation Tool (CGT) is a tool to create ecosystem model code

from two ingredients:

1. a formal description of the ecosystem tracers and processes in a list of text files

2. a set of "code templates” for the host model

The tool then extracts the information from the text files and fills the code templates

to create your model code.

1 Introduction

1.2 Where can | find it

All you need to generate your ecosystem model can be downloaded from http://www.ergom.net.
You need:

e A binary: Windows binaries and Linux binaries exist. Linux binaries should run
under most recent LINUX distributions.

e The formal model description (text files).

e The code templates for different models. At the beginning, try to start with the
MATLAB model, as it is most easy.

1.3 What is the structure of this document

e In Chapter[2], a short overview is given on the concept of process-oriented ecosystem
modelling. It outlines the concept of tracers, processes and element conservation.

e In Chapter Bl you find the information on how to describe your ecosystem model
in a way such that it can be read by the Code Generation Tool.

e In Chapter [you find the information on how create your ecosystem model using
CGT, and how to write your own “code templates” to include your ecosystem
model in a physical host model of your choice.

e In Chapter Bl you find a description on the numerical time-stepping scheme used
that keeps the tracer values non-negative.

e In Chapter [l you find documentation on how the nutrient tagging and age attri-
bution technique work, both in theory and in practice.

e In Chapter [l you will find documentation for using advanced features of CGT:
[Balancing equations| lcombined tracers| vector tracersl and [pseudo-3d tracers|

http://www.ergom.net

2 The concept of process-oriented
modelling

The definition of what a tracer and what a process is shall be outlined here.

3 Modifying the ecosystem model

To modify the ecosystem model (normally) only the textfiles need to be changed. (see
“Syntax of the text files” in section B.2)) So, first, create a copy of your text file directory
which you want to modify.

3.1

Using the Editor cgt_edit

It is recommended to use the special editor cgt_edit to modify your ecosystem model.
However, you may use any editor to edit the text files, it is straightforward. So here we
only describe the usage of cgt_edit.

3.2

Run cgt_edit.exe (or cgt_edit). You will be asked whether to load an existing
model or create a new one. So you have to load or save the file modelinfos.txt.
This will open (or create) the whole set of text files for editing.

Note that all changes are saved immediately, so be sure you made a working copy
of your existing set of text files.

On the left, you can see different categories (e.g. constants, tracers, processes)
marked in different colors. Click on them to view the list of constants, list of
tracers etc.

When you select e.g. a process, you will see its properties on the right. Some words
appear with a colored background, these are defined elsewhere (e.g. constants in
blue, tracers in green). Right-click them to see their properties.

Afterwards, use the ”Back”-Button on the top left to return to where you were.

A click on the ”Help”-Button at the top right will tell you what properties of the
selected tracer, process etc. you may modify. A detailed explanation of what these
properties mean is given in the next section.

Syntax of the Text Files

There are different textfiles that each contain different parts of the ecosystem model.
These are:

e [constants. txtl- contains model constants, such as stochiometric ratios, maximum

growth rates etc.

3 Modifying the ecosystem model

e [Eracers.txtl- contains the description of the tracers (state variables) of the model.

e [auxiliaries.txtl- contains the auxiliary variables that need to be calculated to

determine the process rates

e [processes. txt|- contains the model processes that transform the tracers into each

other.

e [eTements. txtl - contains a list of chemical elements that are contained in the

tracers.

e [ceTements. txtl - contains a list of "colors” attributed to the elements to track

them in the model by a source-attribution technique, seechapter [Gl

e modeIinfos.txtl- contains some settings and some general information about the

ecosystem model.

In the textfiles, you describe properties if these tracers, processes etc. All of them contain
a property comment=. Here, please put in literature citations, comments on uncertainty,
anything that may help others understand what’s going on in your model.

3.2.1 constants.txt

name = code name of constant
description = | description including unit, default=""
value = value(s) separated by ”;”

By default, specify only one value.
How to use a "vector constant” is described in section [7.3.

i

3.2.2 tracers.txt

name = variable name in the code

description = description including unit, default="", e.g. ”flagge-
lates”

atmosDep = O0=no atmospheric depositon of this tracer (default),
1=atmospheric deposition of this tracer
If you set atmosDep to 1, you will need to provide a
forcing file for atmospheric deposition.

child0of = e.g. "flaggelates” for “red_N_in_flaggelates”, de-

fault="none”

You will most probably not use this property manually.
If you specify colored elements (for source attribution),
the new tracers that are created as copies of the old
ones will have this property.

10

3.2 Syntax of the Text Files

contents = number n of elements contained in this tracer, de-
fault=0

It is most elucidating to see an example:

contents = 2

N=1
P =rfrp
(where rfr_p is a constant (redfield ratio P/N))
dimension = how many instances of this tracer exist, e.g. a tracer

named ”cod” with dimension=2 exists as ”cod_$cod”
which is "cod_1” and ”cod_2”, default=0
This is described in detail in “Using vector tracers”

(section[7.3).

gasName = name of an auxiliary variable containing the concen-
tration [mol/kg] of the dissolved gas in the surface cell,
e.g. 7co2” for tracer "dic”. Default="" meaning it is
the tracer concentration itself.

You do not need this parameter if you define a gas fluzx
manually.

initValue = initial value, default="0.0”, set useInitValue to 1 to
use it

By default, you provide a file with an initial concen-
tration. Alternatively, you can say it is constant ev-
erywhere. In this case, set inttValue to the correct
value and useInitValue to 1. If useInitValue=0,
initValue is ignored.

isActive = 1=active (default); O=virtual tracer to check element
conservation

For the generated code, only active tracers are rele-
vant. But to check if the stochiometry of process equa-
tions is correct, you sometimes need to consider "trac-
ers” that you would normally neglect, such as water
(H20). For these, set isActive=0 and they will not
appear in your model, but allow you to check its consis-
tency or balance process equations automatically, see

section [7]]

isCombined = l=combined tracer that accumulates several virtual
tracers (isActive=false) in one variable, its contents
are tracers rather than elements; O=not (default)
This is a strange kind of tracer that needs some de-
tailed explanation given in section [7.9

isMixed = 1=mix with neighbour cells if negative, 0=do not, de-
fault=0, only applicable to tracers with vertLoc=WAT

11

3 Modifying the ecosystem model

Legacy code for MOMS3 compatibility.

isOutput = 1=occurs as output in model results (default); O=only
internal use

In cgt_edit. exe, simply click the checkbox next to the
tracer to select it for output.

isPositive = O=may be negative, 1=always non-negative (default)
If isPositive is set to 1, this has two effects: a)
when the tracer value is negative at the beginning of
the time step (e.g. due to advection overshoots), it
is treated as zero. b) when a positive-definite time-
stepping scheme is used, processes that consume this
tracer will be stopped when the tracer value becomes
zero.

isStiff = O=not stiff (default); 1=stiff, use Patankar method
if concentration declines; 2=stiff, always use modified
Patankar method

A “stiff tracer” is a tracer which is consumed by
processes on a very short time scale, that is, on a
time scale below the model time step. In this case,
a Fuler-Forward calculation would typically give neg-
ative tracer values, and a simple clipping of the pro-
cesses would lead to bad estimates for the tracer con-
centration. However, a special time stepping method
can be used to overcome this problem as described in

section [5.2

massLimits = semicolon-seperated string of (dimension-1) FOR-
TRAN expressions for mass limits for stage-resolving
models [mol], default=""

Relevant for vector tracers only. This is described in
detail here: Using vector tracers (section[7.3)

fortran formula for opacity (for light limitation), de-
fault="0"

The opacity of a tracer (given in [m?/mol]) describes
how much it inhibits the light coming from the top.
Use a real number or the name of a constant. Is only
relevant for tracers with vertLoc=WAT or SUR.

opacity

molDiff

molecular diffusivity in pore water [m2/s|, use the
name of a vertLoc=SED auxiliary variable, de-
fault="0.0"

Only for use in sediment models

fortran formula for opacity [m2/mol] (for light limita-
tion), default="0"

opacity

12

3.2 Syntax of the Text Files

You typically use the name of a constant here, giv-
ing the light attenuation [1/m] at a concentration of 1
mol/m3.

riverDep =

file.

O0=no river depositon of this tracer, 1=river deposition
of this tracer (default)

If you set “riverDep” to 1, you will need to provide
concentrations for this tracer in the river deposition

schmidtNumber =

name of an auxiliary variable describing the Schmidt
number [1] for gasses which flow through the surface,
default="0"

You do not need this parameter if you define a gas flux
manually.

solubility =

name of an auxiliary variable describing the solubility
[mol/kg/Pal for gasses which flow through the surface,
default="0"

You do not need this parameter if you define a gas fluzx
manually.

useInitValue =

1=use initValue as initial concentration, 0=do not
(load initial concentration from file) (default)
see init Value

vertDiff =

formula for vertical diffusivity [m2/s|, default="0"

verticalDistribution

Relevant for vertLoc=FIS only: Name of an auxiliary
variable proportional to which the vertical distribution
of the tracer is assumed. Default="1.0"

For vertLoc=FIS (Pseudo-3d) tracers, see a detailed
explanation in section [77).

vertLoc =

Where the tracer exists: WAT=everywhere in the water
column (default), SED=in the sediment only, SUR=in
the surface cell only, FIS=Pseudo-3d tracer (fish-type
behaviour)

Tracers with vertLoc=WAT have the unit [mol/kg].
Tracers with vertLoc=SED or SUR have the wunit
[mol/m?]. These units are, however, automatically
converted if both vertLoc=WAT and vertLoc=SED trac-
ers appear in one process. vertLoc=SUR 1S not
supported yet (for tracers) in MOM4, as we would
need surface drift. wvertLoc=FIS (Pseudo-3d trac-
ers) are stored in one vertical layer only (just like
vertLoc=SED tracers) but can interact with tracers ev-
erywhers in the water column, see a detailed explana-

tion in section [7.4)

vertSpeed =

formula for vertical speed [m/day], default="0"

13

3 Modifying the ecosystem model

Positive means upward. The vertical speed and diffu-
swity need not be constant, but may e.g. also be an
auziliary variable.

3.2.3 auxiliaries.txt

name = variable name in the code

description = e.g. "absolute temperature [K]” default=""

Please give all your auziliary variables a unit. The
dimensionless ones should end with [1].

templ= ... temp9= for calculating a temporary value which appears in the
formula, default="".

e.g.

templ=no3*no3

temp2=no3limit*no3limit
formula=templ/(templ+temp2)

formula = formula for calculating this auxiliary variable

See section[3.3 on how to write formulas that work in
several programming languages.
calcAfterProcesses = | 1=calculate this auxiliary after all process rates are
known, default=0

This property is useful if you want to have a flur ap-
pearing in your output file which is the sum of several
processes, but you do not want all of the processes in
your output.

iterations = how often this auxiliary variable is calculated in an
iterative loop, default=0 meaning no iterations
Iterations are always done before all other auxiliary
variables (iterations=0) are calculated. If you want
to calculate an auxiliary variable before the iterative
variables are calculated, set iterations to 1.

iterInit = the initial value in the iterative loop, default="0.0"
isOutput

1=occurs as output in model results; O=internal use
only (default)

In cgt_edit. exe, simply click the checkboxr next to the
auxiliary variable to select it for output.
isUsedElsewhere = 1=make the value of this auxiliary accessible from
outside the biological model (e.g. use a ”diagnostic
tracer” in MOMS5); O=internal use only (default)
isZGradient = 1=is a vertical gradient of a tracer, 0=is not (default).
If 1, formula must be the name of the tracer,
which must have vertLoc=WAT. tsZGradient=1 re-
quires vertLoc=WAT.

14

3.2 Syntax of the Text Files

isZIntegral =

1=is a vertical integral (of value times density) of a
tracer or an auxiliary variable, 0=is not (default).

If 1 7formula” must be the name of the tracer or
auziliary variable, which must have vertLoc=WAT.
1sZIntegral=1 requires vertLoc=SED.

vertLoc =

Where the auxiliary variable is calculated:
WAT=everywhere in the water column (default),
SED=in the sediment / at sediment-water interface,
SUR=in the surface cell only

3.2.4 processes.txt

name =

variable name in the code used for the turnover

description =

e.g. "grazing of zooplankton”

equation =

equation which, like a chemical equation, lists reaction
agents and products of this process.

example: t_no3 + 1/16*t_pod -> t_lpp

tracers to the left of the 7=>” are consumed, tracers to
the right of the ”=>" are produced by this process.

feedingEfficiency =

name of an auxiliary variable (values 0..1) which tells
how much of the food in a certain depth is accessi-
ble for the predator with vertLoc=FIS. Relevant for
vertLoc=FIS only. Default="1.0"

For creating processes which involve vertLoc=FIS
tracers, see a detailed explanation in section [7.4)

isActive

1=active (default); O=process is switched off

isOutput =

1=occurs as output in model results; O=internal use
only (default)

In cgt_edit. exe, ssimply click the checkbox next to the
process to select it for output.

limitation
limitation

TYPE tracer > value or

TYPE tracer < value

TYPE = HARD (theta function), MM (Michaelis-
Menten), MMQ (quadratic Michaelis-Menten), IV
(Ivlev), IVQ (quadratic Ivlev), LIN (linear), TANH
(tangens hyperbolicus)

tracer = name of tracer that needs to be present
value = value that needs to be exceeded, may also be
a constant or auxiliary

Several of these lines may exist, limitations are multi-
plied.

15

3 Modifying the ecosystem model

See section [(positive-definite time stepping scheme)
to see how limitations can work, apart from introduc-
ing a factor into the formula.

processType = type of process, e.g. ”propagation”, de-
fault="standard”

This property can be wused to switch off a
whole set of processes at once by setting the
disabledProcessTypes property in modelinfos. txt
This is especially useful when some processes (e.qg.
atmospheric gas fluz) are done by the host model
sometimes and sometimes not.

repaint = number n of repainting actions to be done by the pro-
cess, default=0

This line is followed by n lines of this kind:
<0ldColor> <element> = <newColor>, e.g.

all N = blue

blue P = none

red all = green

Use this property to start element tagging, see chapter

turnover = formula for calculating the process turnover [mol/kg
or mol/m?]

[mol/kg] applies for processes with wvertLoc=WAT,
[mol/m2] for all other processes

See section[33 on how to write formulas that work in
several programming languages.

vertLoc = Where the process takes place: WAT=everywhere in
the water column (default), SED=in the sediment / at
sediment-water interface, SUR=in the surface cell only,
FIS=process involving pseudo-3d tracers

Processes with vertLoc=WAT have a turnover with unit
[mol/kg/day]. Tracers with vertLoc=SED or SUR have
the a turnover with unit [mol/m?]. For creating pro-
cesses which involve vertLoc=FIS tracers, see a de-
tailed explanation in section [7.4)

3.2.5 elements.txt

name = internal name used, e.g. "N”

description = | e.g. "nitrogen”

3.2.6 celements.txt

16

3.2 Syntax of the Text Files

element =

internal name of element, e.g., "N”

color =

e.g. "red”, may not contain spaces

description =

e.g. "nitrogen from Oder river”, default=""

atmosDep =

1=atmospheric deposition of marked tracers may oc-
cur, O=not (default)

isAging =

l=accumulates time since entering the system,
0=does not (default)

This implies the creation of two new state variables,
e.g. “aged_red_N” and “aged_red_N_at_bottom”, stor-
ing the product of the total concentration of red N
in all tracers and its average age. Also, processes
which raise or lower this “age comcentration” will be
created. The average age can then be accessed via
aged_red_N/total_red_N. For details, see Section [G.3.

isTracer

1=store total Element content in a separate tracer,
0=do not (default)

This implies the creation of two new state variables,
e.g. “total_red_N” and “total_red_N_at_bottom”, stor-
ing the total concentration of red N in all tracers.

riverDep

l=river deposition of marked tracers may occur,
O0=not (default)

3.2.7 modelinfos.txt

name = bio-model short name or abbreviation

description = bio-model long name

version = bio-model version

author = bio-model author(s)

contact = e.g. e-mail adress of bio-model author

ageEpsilon = small value used for preventing zero division for age
calculation; default="1.0e-20”

autoBurialFluxes = l=auto-generate fluxes for burial of colored elements

with isTracer=1; 0=do not (default)

autoLimitProcesses =

1=add limitations to all processes that stop them
when one of their precursors with isPositive=1 be-
comes zero (default); 0=do not

autoMassClassProp = O=manual mass-class propagation processes (default);
1=mass-class propagation when upper mass limit is
reached; 2=advanced propagation; 3=age-class prop-
agation at beginning of each year

autoSortMoving = 1=sort tracers: not vertically moving first, then verti-

cally moving; 0=do not (default)

17

3 Modifying the ecosystem model

autoSplitColors = 1=split tracers and processes according to colored el-
ements (default); 0=do not

autoUnixOutput = 1=enforce Unix line-feed output on Windows systems;
0=do not (default)

autoWrapF = l=auto-wrap too long lines in all files with ”.f* or 7. F”
extension (default); 0=do not

autoWrapF90 = 1l=auto-wrap too long lines in all files with ”.f90” or
7 .F90” extension; 0=do not (default)

debugMode = 1=debug mode (output of all values); O=output only

of those values with output=1 (default)

inactiveProcessTypes

semicolon-separated list of process types that are set
inactive, e.g. because they are represented in the host
model, e.g. "gas_exchange; sedimentation; resuspen-
sion”

outputPath = path where to write the output files

realSuffixF90 = e.g. ”8”, appends a suffix (e.g. _8) to all real values
in .f90 files which do not yet contain a suffix (do not
include the underscore here); default=" meaning no
suffix is added.

templatePath = path to the code template files

3.3 Writing formulas with compatibility to different
programming languages

3.3.1 How to write expressions that work everywhere

CGT is designed to generate different models, possibly in different languages, from the
same formal description. However, to make that possible, you have to be careful and
use only common syntax in the formulas you write. So, please

e do not use the exponentiation operator x**y but the power function power(x,y).

e use the step function theta(...) instead of using “greater than”-operators.

e never use more than two arguments in the min(...) or max(...) function - use
e.g. min(a,min(b,c)) instead of min(a,b,c).

e Only use the natural logarithm (base e) as log(...).

3.3.2 External forcing parameters

The following (physical) parameters may be used in formulas and have to be provided

by the host model:

18

3.3 Writing formulas with compatibility to different programming languages

cgt_temp potential temperature [°C]
cgt_sali salinity [g/ke]
cgt_light downward flux of [W/m?]
photosynthetically active radiation
cgt_cellheight cell height [m)]
cgt_bottomdepth depth of the bottom of the current cell | [m]
cgt_density (Boussinesq) density of the water [kg/m?]
cgt_timestep biomodel timestep [days]
cgt_longitude geographic longitude [deg]
cgt_latitude geographic latitude [deg]
cgt_current wave stress | combined shear stress of currents [N/m?]
and waves at the bottom
cgt_year calendar year (integer) [years]
cgt_dayofyear day since beginning of the year [days]
(integer)
cgt_hour hours since midnight (fractional) [hours]
cgt_iteration number of current iteration in the 1]

iterative loop (integer)

19

4 Code templates and code generation

4.1 Generating Code with CGT

4.2 Creating code templates

This section is not ready yet. Please take a look at the examples which exist and refer
to the following list of tags:

List of allowed tags for CGT code templates

all conditions also work with /= instead of =

<codegen_version>
<now>
<noNewLine>

<numFlatTracers>
<numFlatTracers+n> n=1..9
<num3DTracers>
<num3DTracers+n> n=1..9
<numMovingTracers>
<numMovingTracers+n> n=1..9

<constants name=>
<name>

<trimName>
<value>
<description>
<comment>

</constants>

<tracers name=; vertSpeed=; opacity=; vertLoc=; isPositive=; childOf=; hasTimeTendenc:
<backwardTracers name=; vertSpeed=; opacity=; vertLoc=; isPositive=; childOf=; hasTimeTendenc!
<name>
<trimName>
<description>
<comment>

21

4 Code templates and code generation

<numFlat>
<numFlat+n> n=1..9
<num3D>
<num3D+n> n=1..9
<numMoving>
<numMoving+n> n=1..9
<vertSpeed>
<vertSpeedValue>
<-vertSpeedValue>
<opacity>
<childOf>
<childOfNumMoving>
<timeTendencies vertLoc=>
<timeTendency>
<description>
</timeTendencies>
<children>
<childIndex>
<childName>
<index>
<name>
</children>
<initValue>
<molarMass>
<solubility>
<schmidtNumber>
<ceTotalIndex>
<ceAgedIndex>
<ceTotalName>
<ceAgedName>
<ceAmount>
</tracers>
</backwardTracers>

<auxiliaries name=; calcAfterProcesses=; calcBeforeZlntegtal=; vertlLoc=; isZGradien
<name>

<trimName>
<templ> ... <temp9> (lines containing these tags are deleted if templ...temp9=’
<formula>
<description>
<iterations>
<iterInit>

</auxiliaries>

22

4.2 Creating code templates

<processes name=; vertLoc=; isOutput=; isStiff=; processType=>
<name>
<trimName>
<description>
<turnover>
<comment>
<stiffFactor>
<stiffTracer>
<processType>
</processes>

<cElements isTracer= ;isAging=>
<total>
<totalTop>
<totalBottom>
<totalBottomNumFlat>
<aged>
<agedTop>
<agedBottom>
<agedBottomNumFlat>
<totalIndex>
<totalIndexTop>
<totalIndexBottom>
<agedIndex>
<agedIndexTop>
<agedIndexBottom>
<totalIndexNum>
<totalIndexTopNum>
<totalIndexBottomNum>=<totalBottomNumFlat>
<agedIndexNum>
<agedIndexTopNum>
<agedIndexBottomNum>=<agedBottomNumFlat>
<containingTracers vertLoc=; vertSpeed=>
<ct>
<ctNumFlat>
<ctNumMoving>
<ctAmount>
<ctIndex>
<ctIndexNum>
</containingTracers>
</cElements>

23

5 The positive-definite time-stepping
scheme

Here it shall be described how the positive-definite time-stepping scheme works. An
article about it is under revision. We will cite it here if it is out.

5.1 Making a Euler-Forward time step positive

5.2 Treating stiff problems with modified Patankar methods

25

6 Using colored elements

6.1 Theory of element tagging

The approach has been described by [Menesguen et al., 2006] Please refer to [Radtke et al., 2012]
for the theory of element tagging.

6.2 Practice of element tagging in CGT

6.3 Theory of age attribution

The age-attribution technique is described in [Deleersnijder et al., 2001]. Please refer
to [Radtke et al., 2012] for the application of the age-attribution technique to chemical
elements in an ecosystem model.

6.4 Practice of age attribution in CGT

27

7 Using special features in CGT

7.1 Automatic balancing of process equations

7.2 Using combined tracers (e.g. alkalinity)

A tracer with isCombined=1 is a strange kind of tracer that needs some detailed expla-
nation. Unlike other tracers which have elements as their contents, this tracer has other
tracers (child tracers) as its contents. It represents some kind of sum over these child
tracers.

We take the example of “total alkalinity” which is used in the CO2 add-on to explain
how this tracer works. Total alkalinity is defined as the amount of a strong acid needed
to titrate a solution to a pH of 4.3. In practice, it can be calculated as a sum of concen-
trations of several ions. In our case, the following formula gives a good approximation:

tlalk = [OH | —[H30T|+ [HCO3]+2[CO37] + [B(OH);]
+2[PO}™] + [HPO¥"| — [H3POy4) + [HS™] (7.1)

As we can see, some concentrations (like [POi_]) are considered as tracers in our
model (in this case, t_po4). For other concentrations, e.g. [H3O0"] or [OH], this is
not possible, as the reaction OH~ + H3O" — 2H50 is very quick. However, these fast
reactions do not change total alkalinity.

We define total alkalinity as an isCombined=1 tracer. Now if some processes create
or consume e.g. H3OT, this will change the value of total alkalinity, even if H3OT is
no tracer in our model. In other words, processes which consume or produce any of the
“contents” of total alkalinity will generate a time tendency for the total alkalinity tracer.

7.3 Vector tracers
7.4 Pseudo-3d tracers

7.5 Working with add-ons

7.5.1 Why use add-ons?

FEcosystem models differ in complexity. While it is desirable for general application to
keep the model as simple as possible, using the model for a special research question
may require resolving more details of a special process, a special trophic level etc. For
example, “carbon pump” estimations require the representation of the carbon cycle,

29

7 Using special features in CGT

making it necessary to include a DIC and total alkalinity tracer. Maintaining two models
- one with carbon cycle and one without - however, bears the risk of divergence as one
of them is improved.

A better way is the following: All basic processes are maintained in one standard
model. All carbon-cycle processes are described in an add-on which can be loaded on
top of the standard model. It then extends the original model.

7.5.2 How are add-ons stored
General explanation

Add-ons look very much like formalized ecosystem models - they consist of the same set
of textfiles (modelinfos.txt, constants.txt, tracers.txt ...). However, they only
contain the modifications needed to the original model.
We make an example: The original constants.txt looks like this:
name = t_low
value = 10.0
description = lower temperature limit [degC]
ok Kok ok koK KKk K ok Kok ok Kok ok kK ok
name = t_up
value = 20.0
description = upper temperature limit [degC]

The constants.txt in the add-on looks like this:

name = t_low

value = 5.0

ok ok Kok KKK KKK KK KK KKK ok K

name = s_low

value = 1.0

description = lower salinity limit [g/kg]
Kok ok Kok KKK KoK ok KKK oK KK KK oK ok K

name = delete_in_add_on_t_up

The first entry will update the constant t_low which already exists (as the name is
the same). It will change its value to 5.0. The description will not be changed.

The second entry defines a new constant.

The third entry is a command to delete the constant t_up.

Details on add-on text files

e modelinfos.txt - this works differently, the original modelinfos are forgotten and
only those from the add-on are applied.

e auxiliaries.txt - The ordering of the auxiliaries may be changed, because cgt
and cgt_edit automatically try to place them in the order in which they are

30

7.5 Working with add-ons

calculated.

e tracers.txt - When any of the contents has changed, all of them are saved again
in the add-on. That means that contents only occurring in the original file are
then forgotten.

e processes.txt - When any of the limitations has changed, all of them are saved
again in the add-on. That means that limitations only occurring in the original
file are then forgotten. Use the line limitations=0 to delete all limitations of a
process.

How to use add-ons

This is very simple. If you load your text files in cgt, you will be asked whether you
want to load an add-on. Click yes and load the modelinfos.txt of the add-on. You
may load more than one add-on, but be aware that the order in which you load them
may make a difference. Then, create your code as normally.

How to create add-ons

e creating a new add-on
First, create a copy of the original model you want to extend. Load it in cgt_edit.
Then, apply your changes and extend your model. It will be saved as an extended
model, not as an add-on.

Then, click “open a set of text files as reference for comparison” and load the
original model (not the copy of course). The program cgt_edit will now indicate
what you have changed compared to the original model. These changes can be
saved as an add-on. To do so, click the button “save differences as add-on”.

e modifying an existing add-on
Load the model and the add-on. You will be asked to save the extended model - do
so. This storage of the extended model is only needed temporarily, you can delete
it after you have finished, as you want an add-on and not an extended model.

Click “open a set of text files as reference for comparison” and load the original
model, but without the add-on. The program cgt_edit will now indicate all
changes which the add-on makes to the original model.

Do your modifications until you are done - the changes to the original model might
become more. When you are done, click “save differences as add-on”. Save your
modified add-on to a new folder.

31

Bibliography

[Deleersnijder et al., 2001] Deleersnijder, E., Campin, J.-M., and Delhez, E. J. (2001).

The concept of age in marine modelling: I. theory and preliminary model results.
Journal of Marine Systems, 28(3-4):229-267.

[Menesguen et al., 2006] Menesguen, A., Cugier, P., and Leblond, I. (2006). A new
numerical technique for tracking chemical species in a multisource, coastal ecosystem

applied to nitrogen causing ulva blooms in the bay of brest (france). Limnology and
oceanography, 51(1):591-601.

[Radtke et al., 2012] Radtke, H., Neumann, T., Voss, M., and Fennel, W. (2012). Mod-
eling pathways of riverine nitrogen and phosphorus in the baltic sea.

Journal of
Geophysical Research, 117(C9):C09024.

33

	Introduction
	What is the Code Generation Tool
	Where can I find it
	What is the structure of this document

	The concept of process-oriented modelling
	Modifying the ecosystem model
	Using the Editor cgt_edit
	Syntax of the Text Files
	constants.txt
	tracers.txt
	auxiliaries.txt
	processes.txt
	elements.txt
	celements.txt
	modelinfos.txt

	Writing formulas with compatibility to different programming languages
	How to write expressions that work everywhere
	External forcing parameters

	Code templates and code generation
	Generating Code with CGT
	Creating code templates

	The positive-definite time-stepping scheme
	Making a Euler-Forward time step positive
	Treating stiff problems with modified Patankar methods

	Using colored elements
	Theory of element tagging
	Practice of element tagging in CGT
	Theory of age attribution
	Practice of age attribution in CGT

	Using special features in CGT
	Automatic balancing of process equations
	Using combined tracers (e.g. alkalinity)
	Vector tracers
	Pseudo-3d tracers
	Working with add-ons
	Why use add-ons?
	How are add-ons stored

